Blow Up and Exponential Growth to a Petrovsky Equation with Degenerate Damping

نویسندگان

چکیده

This paper deals with the initial boundary value problem of Petrovsky type equation degenerate damping. Under some appropriate conditions, we study finite time blow up and exponential growth solutions negative energy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow-Up of Solutions for a System of Petrovsky Equations with an Indirect Linear Damping

In this paper, we consider a coupled system of Petrovsky equations in a bounded domain with clamped boundary conditions. Due to several physical considerations, a linear damping which is distributed everywhere in the domain under consideration appears only in the first equation whereas no damping term is applied to the second one (this is indirect damping). Many studies show that the solution o...

متن کامل

Existence and Blow-up for a Nonlocal Degenerate Parabolic Equation

In this paper, we establish the local existence and uniqueness of the solution for the degenerate parabolic equation with a nonlocal source and homogeneous Dirichlet boundary condition. Moreover, we prove that the solution blows up in finite time and obtain the blow-up set in some special case. Mathematics Subject Classification: 35K20, 35K30, 35K65

متن کامل

Blow-up dynamics for the aggregation equation with degenerate diffusion

We study radially symmetric finite time blow-up dynamics for the aggregation equation with degenerate diffusion ut = ∆u m − ∇ · (u ∗ ∇(K ∗ u)) in R, where the kernel K(x) is of power-law form |x|−γ . Depending on m, d, γ and the initial data, the solution exhibits three kinds of blow-up behavior: self-similar with no mass concentrated at the core, imploding shock solution and near-self-similar ...

متن کامل

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

Blow up problems for a degenerate parabolic equation with nonlocal source and nonlocal nonlinear boundary condition

* Correspondence: zhgs917@163. com Nonlinear Scientific Research Center, Faculty of Science, Jiangsu University, Zhenjiang 212013, China Full list of author information is available at the end of the article Abstract This article deals with the blow-up problems of the positive solutions to a nonlinear parabolic equation with nonlocal source and nonlocal boundary condition. The blow-up and globa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Universal journal of mathematics and applications

سال: 2021

ISSN: ['2619-9653']

DOI: https://doi.org/10.32323/ujma.935519